Главная страница

ФИЗИОЛОГИЯ. Методы физиологических исследований




Наблюдение как метод физиологического исследования. Сравнительно медленное развитие экспериментальной физиологии на протяжении двух столетий после работ В. Гарвея объясняется низким уровнем производства и развития естествознания, а также несовершенством исследования физиологических явлений путем их обычного наблюдения. Подобный методический прием был и остается причиной многочисленных ошибок, так как экспериментатор должен проводить опыт, видеть и запоминать множество сложных процессов и явлений, что представляет собой трудную задачу. О трудностях, которые создает методика простого наблюдения физиологических явлений, красноречиво свидетельствуют слова Гарвея: «Скорость сердечного движения не позволяет различить, как происходит систола и диастола, и поэтому нельзя узнать, в какой момент и в которой части совершается расширение и сжатие. Действительно, я не мог отличить систолы от диастолы, так как у многих животных сердце показывается и исчезает в мгновение ока, с быстротой молнии, так что мне казалось один раз здесь систола, а здесь — диастола, другой раз — наоборот. Во всем разность и сбивчивость».
Действительно, физиологические процессы представляют собой динамические явления. Они непрерывно развиваются и изменяются, поэтому непосредственно удается наблюдать лишь 1—2 или, в лучшем случае, 2—3 процесса. Однако чтобы их анализировать, не обходимо установить связь этих явлений с другими процессами, которые при таком способе исследования остаются незамеченными. Вследствие этого простое наблюдение физиологических процессов как метод исследования является источником субъективных ошибок. Обычно наблюдение позволяет установить лишь качественную сторону явлений и лишает возможности исследовать их количественно.
Важной вехой в развитии экспериментальной физиологии было изобретение кимографа и введение метода графической регистрации артериального давления немецким ученым Карлом Людвигом в 1847 г.
Графическая регистрация физиологических процессов. Метод графической регистрации ознаменовал новый этап в физиологии. Он позволил осуществить объективную запись изучаемого процесса, сводившую до минимума возможность субъективных ошибок. При этом эксперимент и анализ изучаемого явления можно было проводить в два этапа. Во время самого опыта задача экспериментатора заключалась в том, чтобы получить высококачественные записи — кривые — килограммы. Анализ полученных данных можно было производить позже, когда внимание экспериментатора уже не отвлекалось на проведение опыта. Метод графической регистрации дал возможность записывать одновременно (синхронно) не один, а несколько физиологических процессов.
Довольно скоро после изобретения способа записи артериального давления были предложены методы регистрации сокращения сердца и мышц (Энгельман), введена техника воздушной передачи (капсула Марея), позволившая записывать иногда на значительном расстоянии от объекта ряд физиологических процессов в организме: дыхательные движения грудной клетки и живота, перистальтику и изменение тонуса желудка, кишечника и т. д. Был предложен метод регистрации изменения сосудистого тонуса (плетизмография по Моссо), объема различных внутренних органов — онкометрия и т. д.
Исследования биоэлектрических явлений. Чрезвычайно важное направление развития физиологии было ознаменовано открытием «животного электричества». Л. Гальвани показал, что живые ткани являются источником электрических потенциалов, способных воз действовать на нервы и мышцы другого организма и вызывать сокращение мышц. С тех пор на протяжении почти целого столетия единственным индикатором потенциалов, генерируемых живыми тканями (биоэлектрических потенциалов), был нервно-мышечный препарат лягушки. Он помог открыть потенциалы, генерируемые сердцем при его деятельности (опыт Келликера и Мюллера), а также необходимость непрерывной генерации электрических потенциалов для постоянного сокращения мышц (опыт «вторичного тетануса» Маттеуччи). Стало ясно, что биоэлектрические потенциалы — это не случайные (побочные) явления в деятельности живых тканей, а сигналы, при помощи которых в организме передаются «команды» в нервной системе и от нее мышцам и другим органам. Таким образом, живые ткани взаимодействуют, используя «электрический язык».
Понять этот «язык» удалось значительно позже, после изобре­тения физических приборов, улавливающих биоэлектрические по­тенциалы. Одним из первых таких приборов был простой телефон. Замечательный русский физиолог Н. Е. Введенский при помощи те­лефона открыл ряд важнейших физиологических свойств нервов и мышц. Используя телефон, удалось прослушать биоэлектрические потенциалы, т. е. исследовать их путем наблюдения. Значительным шагом вперед было изобретение методики объективной графической регистрации биоэлектрических явлений. Нидерландский физиолог Эйнтховен изобрел струнный гальванометр — прибор, позволивший зарегистрировать на фотопленке электрические потенциалы, возни­кающие при деятельности сердца, — электрокардиограмму (ЭКГ). В нашей стране пионером этого метода был крупнейший физиолог, ученик И. М. Сеченова и И. П. Павлова А. Ф. Самойлов, работавший некоторое время в лаборатории Эйнтховена в Лейдене.
Электрокардиография из физиологических лабораторий очень скоро перешла в клинику как совершенный метод исследования состояния сердца, и многие миллионы больных сегодня обязаны этому методу своей жизнью.
В последующем успехи электроники позволили создать компактные электрокардиографы и методы телеметрического контроля, дающие возможность регистрировать ЭКГ и другие физиологические процессы у космонавтов на околоземной орбите, у спортсменов во время соревнований и у больных, находящихся в отдаленных местностях, откуда информация передается по телефонным проводам в крупные специализированные учреждения для всестороннего анализа.
Объективная графическая регистрация биоэлектрических потенциалов послужила основой важнейшего раздела нашей науки — электрофизиологии. Крупным шагом вперед было предложение английского физиолога Эдриана использовать для записи биоэлектрических явлений электронные усилители. В. Я. Данилевский и В. В. Правдич-Неминский впервые зарегистрировали биотоки головного мозга. Этот метод был позже усовершенствован немецким ученым Бергером. В настоящее время электроэнцефалография широко используется в клинике, так же как и графическая запись электрических потенциалов мышц (электромиография), нервов и других возбудимых тканей и органов. Это позволило проводить тонкую оценку функционального состояния органов и систем. Для развития физиологии указанные методы имели также большое значение: они позволили расшифровать механизмы деятельности нервной системы и других органов и тканей, механизмы регуляции физиологических процессов.
Важной вехой в развитии электрофизиологии было изобретение микроэлектродов, т. е. тончайших электродов, диаметр кончика которых равен долям микрона. Эти электроды при помощи микроманипуляторов, можно вводить непосредственно в клетку и регистрировать биоэлектрические потенциалы внутриклеточно. Микроэлектродная техника дала возможность расшифровать механизмы генерации биопотенциалов — процессов, протекающих в мембранах клетки. Мембраны являются важнейшими образованиями, так как через них осуществляются процессы взаимодействия клеток в организме и отдельных элементов клетки между собой. Наука о функциях биологических мембран — мембранология — стала важным разделом физиологии.
Методы электрического раздражения органов и тканей. Существенной вехой в развитии физиологии было введение метода электрического раздражения органов и тканей. Живые органы и ткани способны реагировать на любые воздействия: тепловые, механические, химические и др. Электрическое раздражение по своей природе близко к «естественному языку», с помощью которого живые системы обмениваются информацией. Основоположником этого метода был немецкий физиолог Дюбуа-Реймон, предложивший свой знаменитый «санный аппарат» (индукционная катушка) для дозированного электрического раздражения живых тканей.
В настоящее время для этого используют электронные стимуляторы, позволяющие получить электрические импульсы любой фор мы, частоты и силы. Электрическая стимуляция стала важным методом исследования функций органов и тканей. Указанный метод широко применяется и в клинике. Разработаны конструкции раз личных электронных стимуляторов, которые можно вживлять в организм. Электрическая стимуляция сердца стала надежным способом восстановления нормального ритма и функций этого жизненно важного органа и возвратила к труду сотни тысяч людей. Успешно применяется электростимуляция скелетных мышц, разрабатываются методы электрической стимуляции участков головного мозга при помощи вживленных электродов. Последние при помощи специальных стереотаксических приборов вводят в строго определенные нервные центры (с точностью до долей миллиметра). Этот метод, перенесенный из физиологии в клинику, позволил излечить тысячи неврологических больных и получить большое количество важных данных о механизмах работы человеческого мозга (Н. П. Бехтерева).
Помимо регистрации электрических потенциалов, температуры, давления, механических движений и других физических процессов, а также результатов воздействия этих процессов на организм, в физиологии широко применяются химические методы.
Химические методы исследования в физиологии. «Язык» электрических сигналов не единственный в организме. Распространенным является также химическое взаимодействие процессов жизнедеятельности (цепи химических процессов, происходящих в живых тканях). Поэтому возникла область химии, изучающая эти процессы, — физиологическая химия. Сегодня она превратилась в самостоятельную науку — биологическую химию, раскрывающую молекулярные механизмы физиологических процессов. Физиологи в экспериментах широко используют методы, возникшие на стыке химии, физики и биологии, что в свою очередь породило уже новые отрасли науки, например биологическую физику, изучающую физическую сторону физиологических явлений.
Физиолог широко использует радионуклидные методы. В современных физиологических исследованиях применяются и другие методы, заимствованные из точных наук. Они дают поистине бесценные сведения при количественном анализе механизмов физиологических процессов.

Электрическая запись неэлектрических величин. Сегодня значительные успехи физиологии связаны с использованием радиоэлектронной техники. Применяются датчики — преобразователи различных неэлектрических явлений и величин (движение, давление, температура, концентрация различных веществ, ионов и т. д.) в электрические потенциалы, которые затем усиливаются электронными усилителями и регистрируются осциллографами. Разработано огромное количество разных типов таких регистрирующих устройств, которые позволяют записать на осциллографе очень многие физиологические процессы и ввести полученную информацию в компьютер. В ряде приборов используют дополнительные воздействия на организм (ультразвуковые или электромагнитные волны и т.д.). В таких случаях записывают величины параметров этих воздействий, изменяющих те или иные физиологические функции. Преимуществом подобных приборов является то, что преобразователь — датчик можно укрепить не на исследуемом органе, а на поверхности тела. Испускаемые прибором волны проникают в организм, и после отражения исследуемого органа регистрируются датчиком. На таком принципе построены, например, ультразвуковые расходомеры, определяющие скорость кровотока в сосудах; реографы и реоплетизмографы регистрируют изменение величины электрического сопротивления тканей, которое зависит от кровенаполнения различных органов и частей организма. Преимуществом таких методов является возможность исследования организма в любой момент без предварительных операций. Кроме того, такие исследования не наносят вред человеку. Большинство современных методов физиологических исследований в клинике основано на этих принципах. В России инициатором использования радиоэлектронной техники для физиологических исследований был академик В. В. Парин.
Метод острого эксперимента. Прогресс науки обусловлен не только развитием экспериментальной науки и методов исследования. Он в огромной мере зависит и от эволюции мышления физиологов, от развития методологических и методических подходов к изучению физиологических явлений. С начала зарождения и до 80-х годов прошлого столетия физиология оставалась наукой аналитической. Она расчленяла организм на отдельные органы и системы и изучала деятельность их изолированно. Основным методическим приемом аналитической физиологии были эксперименты на изолированных органах. При этом чтобы получить доступ к какому-либо внутреннему органу или системе, физиолог должен был заниматься вивисекцией (живосечением). Такие эксперименты называют также острыми опытами.
Подопытное животное привязывали к станку и производили сложную и болезненную операцию. Это был тяжелый труд, но иного способа проникнуть в глубь организма наука не знала. Дело не только в моральной стороне проблемы. Жестокие пытки, не выносимые страдания, которым подвергалось животное, грубо нарушали нормальный ход физиологических явлений и не позволяли понять сущность процессов, протекающих в организме в естественных условиях, в норме. Существенно не помогло и применение наркоза, а также других методов обезболивания. Фиксация животного, воздействие наркотических веществ, операция, кровопотеря — все это совершенно меняло и нарушало нормальную жизнедеятельность организма. Образовался заколдованный круг. Чтобы исследовать тот или иной процесс или функцию органа либо системы, нужно было проникнуть в глубь организма, а сама попытка такого проникновения нарушала нормальное протекание физиологических процессов, для изучения которых и предпринимался опыт. Кроме того, исследование изолированных органов не давало представления об их истинной функции в условиях целостного неповрежденного организма.
Метод хронического эксперимента. Величайшей заслугой русской науки в истории физиологии стало то, что один из самых талантливых и ярких ее представителей И. П. Павлов сумел найти выход из этого тупика. И. П. Павлов болезненно переживал недостатки аналитической физиологии и острого эксперимента. Он нашел способ, позволяющий заглянуть в глубь организма, не нарушая его целостности. Это был метод хронического эксперимента, проводимого на основе «физиологической хирургии».
На наркотизированном животном в условиях стерильности предварительно производили сложную операцию, позволяющую получить доступ к тому или иному внутреннему органу, проделывали «окошечко» в полый орган, вживляли фистульную трубку или выводили наружу и подшивали к коже проток железы. Сам опыт начинали много дней спустя, когда рана заживала, животное выздоравливало и по характеру течения физиологических процессов практически ничем не отличалось от нормального, здорового. Благодаря наложенной фистуле можно было длительно изучать течение тех или иных физиологических процессов в естественных условиях поведения.






Читайте дальше:
Артериальный пульс. Объемная скорость кровотока. Движение крови пососудам. Артериальное давление крови
Свойства нервных центров. Торможение в центральной нервной системе
Гематоэнцефалический барьер и его функции. Нейронные комплексы и их рольв деятельности центральной нервной системы
Особенности нейронной организации спинного мозга. Спинной мозг
Рефлекторные функции спинного мозга. Проводящие пути спинного мозга.Особенности нейронной организации спинного мозга. Спинной мозг
Средний мозг. Ретикулярная формация ствола мозга. Ствол мозга.Продолговатый мозг. Мост
Лимбическая система представляет собой функциональное объединениеструктур мозга
Гипоталамус hypothalamus подбугорье — структура промежуточного мозга,входящая в лимбическую систему
Базальные ядра. Хвостатое ядро. Скорлупа. Бледный шар. Ограда
Координация движений. Термин координация происходит от латинскогоcoordinatio — взаимоупорядочение
Симпатическая часть. Функциональная структура автономной нервнойсистемы. ФИЗИОЛОГИЯ АВТОНОМНОЙ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ
Синаптическая передача возбуждения в автономной нервной системе.Физиология человека
ПРИНЦИПЫ ГОРМОНАЛЬНОЙ РЕГУЛЯЦИИ. Все процессы жизнедеятельностиорганизма строго согласованы между собой по скорости, времени и меступротекания. В организме человека
Методы исследования функций желез внутренней секреции. ЖЕЛЕЗЫ ВНУТРЕННЕЙСЕКРЕЦИИ
Околощитовидные железы. Регуляция обмена кальция осуществляется восновном за счет действия паратирина и кальцитонина
Сосудодвигательный центр. Рефлекторная регуляция сосудистого тонуса.Регуляция движения крови по сосудам. Иннервация сосудов
Секреция и перенос гормонов. Гормоны имеющие гидрофильную природу .ОБРАЗОВАНИЕ СЕКРЕЦИЯ И МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ