Главная страница

Исследование валового обмена. Основной обмен. Правило поверхности




Длительное (на протяжении суток) определение газообмена дает возможность не только найти теплопродукцию организма, но решить вопрос о том, за счет окисления каких питательных веществ шло теплообразование. Рассмотрим это на примере.
Допустим, что обследуемый человек за сутки использовал 654,141 л О2 и выделил 574,180 л СО2. За это же время с мочой выделилось 16,8 г азота и 9,019 г углерода.
Количество белка, распавшегося в организме, определяем по азоту мочи. Так как 1 г азота содержится в 6,25 г белка, то, следовательно, в организме распалось 16,8 ∙ 6,25= 105 г белка. Находим количество углерода белкового происхождения. Для этого определяем количество углерода в распавшемся белке. Так как в белках содержится около 53% углерода, то, следовательно, в распавшемся белке его было:
затрачено количество углерода, равное разности между количеством углерода в распавшемся белке и количеством углерода, выделившегося с мочой, 55,65 л — 9,0191 л = 46,63 л СО2. Определяем объемное количество СО2 белкового происхождения, выделенного через легкие, исходя из того, что из 1 грамм-молекулы углерода (12 г) образуется 22,4 л СО2: 46,65∙22,4/12= 87,043 л СО2. Далее,исходя из дыхательного коэффициента, равного для белков 0,8, находим  количество  О2,  затраченного  на  окисление  белков:)О2=87,043/0,8.
 По разности между количеством всего поглощенного О2 и количеством О2, затраченного на окисление белков, находим количество О2, затраченное на окисление углеводов и жиров: 654,141 л — 108,8 л = 545,341 л О2. По разности между количеством всего выделившегося СО2 и количеством СО2 белкового происхождения, выделившегося легкими, находим количество СО2, образовавшегося при окислении углеводов и жиров: 574,18 л — 87,043 л = 487,137 л СО2. Определяем количество углеводов и жиров, окислившихся в организме обследуемого за сутки. На основании того, что при окислении 1 г жира потребляется 2,019 л О2 и образуется 1,431 л СО2, а при окислении 1 г углеводов потребляется 0,829 л О2 и столько же (0,829 г) образуется СО2 (ДК для углеводов равен 1), составляем уравнение, приняв за х— количество жира, а за у— количество углеводов, окисленных в организме. Решив систему уравнений с двумя неизвестными, получим:
2,019 х + 0,829 у = 545,341 1,431 х + 0,829 у = 487,137
0,588 х = 58,204
х = 99 г жира
Находим количество углеводов, окисленных в организме, подставляя значение х в любое из уравнений:
2,01∙ 999 + 0,829 у = 545,341
у = 417 г углеводов
Итак, освобождение энергии в организме протекало за счет окисления 105 г белков, 99 г жиров и 417 г углеводов. Зная количество тепла, образуемого при окислении 1 г каждого из веществ (см. табл. 10.2), нетрудно рассчитать общую теплопродукцию организма за сутки:
105∙ 4,1 + 99∙ 9,3 + 417∙ 4,1 = 3061 ккал (12,81 кДж).

Интенсивность окислительных процессов и превращение энергии зависят от индивидуальных особенностей организма (пол, возраст, масса тела и рост, условия и характер питания, мышечная работа, состояние эндокринных желез, нервной системы и внутренних органов — печени, почек, пищеварительного тракта и др.), а также от условий внешней среды (температура, барометрическое давление, влажность воздуха и его состав, воздействие лучистой энергии и т. д.).
Для определения присущего данному организму уровня окислительных процессов и энергетических затрат проводят исследование в определенных стандартных условиях. При этом стремятся исключить влияние факторов, которые существенно сказываются на интенсивности энергетических затрат, а именно мышечную работу, прием пищи, влияние температуры окружающей среды. Энерготраты организма в таких стандартных условиях получили название основного обмена.
Энерготраты в условиях основного обмена связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем — дыхательной мускулатуры, сердца, почек, печени. Некоторая часть энерготрат в условиях основного обмена связана с поддержанием мышечного тонуса. Освобождение в ходе всех этих процессов тепловой энергии обеспечивает ту теплопродукцию, которая необходима для поддержания температуры тела на постоянном уровне, как правило, превышающем температуру внешней среды.
Для определения основного обмена обследуемый должен находиться: 1) в состоянии мышечного покоя (положение лежа с расслабленной мускулатурой), не подвергаясь раздражениям, вызывающим эмоциональное напряжение; 2) натощак, т. е. через 12— 16 ч после приема пищи; 3) при внешней температуре «комфорта» (18—20 °С), не вызывающей ощущения холода или жары.
Основной обмен определяют в состоянии бодрствования. Во время сна уровень окислительных процессов и, следовательно, энергетических затрат организма на 8—10 % ниже, чем в состоянии покоя при бодрствовании.
Нормальные величины основного обмена человека. Величину основного обмена обычно выражают количеством тепла в килоджоулях (килокалориях) на 1 кг массы тела или на 1 м2 поверхности тела за 1 ч или за одни сутки.
Для мужчины среднего возраста (примерно 35 лет), среднего роста (примерно 165 см) и со средней массой тела (примерно 70 кг) основной обмен равен 4,19 кДж (1 ккал) на 1 кг массы тела в час, или 7117 кДж (1700 ккал) в сутки. У женщин той же массы он примерно на 10 % ниже.
Интенсивность основного обмена, пересчитанная на 1 кг массы тела, у детей значительно выше, чем у взрослых. Величина основного обмена человека в возрасте 20—40 лет сохраняется на довольно постоянном уровне. В пожилом возрасте основной обмен снижается.
Согласно формуле Дрейера, суточная величина основного обмена в килокалориях (H) составляет:
H=W/K∙A0,1333
где W — масса тела, г; А — возраст человека; К — константа, равная для мужчины 0,1015, а для женщины — 0,1129.
Формулы и таблицы основного обмена представляют средние данные, выведенные из большого числа исследований здоровых людей разного пола, возраста, массы тела и роста.
Определение основного обмена, согласно этим таблицам, у здоровых людей нормального телосложения дают приблизительно верные (ошибка 5—8 %) величины затраты энергии. Несоразмерно высокие данные для определенной массы тела, роста, возраста и поверхности тела величины основного обмена наблюдаются при избыточной функции щитовидной железы. Понижение основного обмена встречается при недостаточности щитовидной железы (микседема), гипофиза, половых желез.

Если пересчитать интенсивность основного обмена на 1 кг массы тела, то окажется, что у теплокровных животных разных видов (табл. 10.4.) и у людей с разной массой тела и ростом она весьма различна. Если же произвести перерасчет интенсивности основного обмена на 1 м2 поверхности тела, полученные у разных животных и людей величины различаются не столь резко.
Согласно правилу поверхности тела, затраты энергии теплокровными животными пропорциональны величине поверхности тела.
Ежедневная продукция тепла на 1 м2 поверхности тела у человека равна 3559 — 5234 кДж (850—1250 ккал), средняя цифра для мужчин — 3969 кДж (948 ккал).
Для определения поверхности тела R применяется формула:
R = К • масса тела2/3
Эта формула выведена на основании анализа результатов прямых измерений поверхности тела. Константа К у человека равна 12,3.
Более точная формула предложена Дюбуа:
R= W0,425 ∙ H0,725 ∙ 71,84
где W — масса тела в килограммах, Н — рост в сантиметрах.
Результат вычисления выражен в квадратных сантиметрах. Правило поверхности верно не абсолютно. Как показано выше (см. табл. 10.4), оно представляет собой лишь правило, имеющее известное практическое значение для ориентировочных расчетов освобождения энергии в организме.
Об относительности правила поверхности свидетельствует тот факт, что у двух индивидуумов с одинаковой поверхностью тела интенсивность обмена веществ может значительно различаться. Уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной, эндокринной и других систем.






Читайте дальше:
Циркадианные ритмы у человека. Классификация биологических ритмов
Биологические часы. У любого живого организма имеются чисто внутренниеритмы, обусловленные колебательными процессами в каждой клетке
Теплообразование при мышечном сокращении. Энергетика мышечногосокращения. Работа и мощность мышцы
Гладкие мышцы. Классификация гладких мышц
Движение крови по сосудам. Артериальное давление крови. ФУНКЦИИСОСУДИСТОЙ СИСТЕМЫ
Многофункциональность секреции. ФИЗИОЛОГИЯ ЖЕЛЕЗИСТОЙ ТКАНИ. Секреция
УПРАВЛЕНИЕ В ЖИВЫХ ОРГАНИЗМАХ
МЕХАНИЗМЫ ДЕЯТЕЛЬНОСТИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ Методы исследованияфункций центральной нервной системы
Организм и внешняя среда. Адаптация. Физиология целостного организма
Принципы интеграции и координации в деятельности центральной нервнойсистемы. Свойства нервных центров
Цереброспинальная жидкость. Элементы кибернетики нервной системы
Проводящие пути спинного мозга. Особенности нейронной организацииспинного мозга. Спинной мозг
Краткая история физиологии. Организм и внешняя среда. Адаптация.Физиология целостного организма
Промежуточный мозг. Таламус
Гиппокамп hippocampus расположен в глубине височных долей мозга иявляется основной структурой лимбической системы
ФИЗИОЛОГИЯ. Физиология её предмет и роль в системе медицинскогообразования
Кора большого мозга. Сенсорные области. Электрические проявленияактивности коры большого мозга. Межполушарные взаимоотношения